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Summary 
•  Random Polyhedral Meshing 

–  Generate random points using the maximal Poisson-disk process 
•  Points placed on reflex boundary features, but not concave or flat features 
•  Contrast to primal methods 

–  Symbolically split points (not in paper) 
–  Construct Voronoi cells  

•  Bounding box, cut by boundary and Voronoi planes 
–  Bounding box works because cells have bounded size 

•  Small edges collapsed 

•  Get 
–  Voronoi mesh of convex polyhedral cells 
–  Bounded cell aspect ratio and facet dihedrals 
–  Random orientation of mesh edges 

•  Needed for fracture mechanics where cracks are restricted to edges 



Maximal Poisson-Disk Sampling (MPS)  

• What is MPS? 
– Dart-throwing 
–  Insert random points into a domain, build set X 

• With the “Poisson” process 

Ω
x4?	


Bias-free: ∀xi ∈ X, ∀Ω ⊂ Di−1 :

P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)
(1a)

Empty disk: ∀xi, xj ∈ X,xi �= xj : ||xi − xj || ≥ r (1b)
Maximal: ∀x ∈ D, ∃xi ∈ X : ||x− xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4× faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.
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In the rest of this paper, we present our algorithm in gradual steps.



Statistical Process ≠ Algorithm 

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

!#

(!!!#

$!!!#

)!!!#

%!!!#

*!!!#

&!!!#

+!!!#

!# (!!!!# $!!!!# )!!!!# %!!!!# *!!!!# &!!!!# +!!!!#

!
"
#"
$
%&
'
"
()
*(
+
,
-)
.
/(
%,
&
%(
0
1%
(

2
3
4
5
"
-(
)
*(
0
1%
/(

2345"-()*(6&-%/(+,-).$((

78&//1#(6&-%(+,-).1$'(

Algorithm progress	
 sliver regions	




“Efficient maximal Poisson-disk sampling” 

Background grid of squares (cubes…) for locality 

First provably correct, time- space-optimal algorithm.	

Mohamed S. Ebeida, Anjul Patney, Scott A. Mitchell, 	

Andrew Davidson, Patrick M. Knupp, and John D. Owens. 	

ACM Transactions on Graphics (Proc. SIGGRAPH 2011), 30(4), 2011.	


Everything is O(1) 
Sid Meier’s Civilization Template	
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• Algorithm 

Efficient maximal Poisson-disk sampling 

–  Phase I 
Throw darts in squares 

•  Pick square uniformly 
•  Pick point in square uniformly 

   E(n) throws proof idea 
•  Hit/miss ratio =  

Voronoi cell area ratio >  
constant. 

   In practice, use flat implicit     
   octree in d>2 

hit	
 miss	


–  Phase II 
Throw darts in polygons    slivers 

•  Pick sliver weighted by area 
•  Pick point in sliver uniformly 
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Bias-free: ∀xi ∈ X, ∀Ω ⊂ Di−1 :

P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)
(1a)

Empty disk: ∀xi, xj ∈ X,xi �= xj : ||xi − xj || ≥ r (1b)
Maximal: ∀x ∈ D, ∃xi ∈ X : ||x− xi|| < r (1c)

Despite the desirability of this distribution, it has been challenging
for the community to discover an efficient algorithm that satisfies
all three conditions. To our knowledge, all prior methods relax the
unbiased or maximal conditions, or require potentially unbounded
time or space. The relaxations may be quite small in practice. The
maximal condition may be resolved down to machine precision.
The bias may be unnoticeable in pair-wise distance spectrum plots.
But our present work appears to be the first method that provably
meets all the conditions with time and space dependent only on the
number of samples produced. (It appears that White et al. [2007]
and Gamito and Maddock [2009] require a tree whose depth is de-
pendent on machine precision; see below.) Our main drawbacks
are the memory requirements for storing polygons and the compli-
cation of coding geometric primitives and tracking data structures.
Our implementations show that any drawbacks are not overwhelm-
ing, and the method works well in practice. Our running time is
competitive with the best.

For a detailed survey of Poisson sampling methods, see Lagae and
Dutre [2008]. Selecting an unbiased Poisson-disk sample point is
known as dart-throwing in computer graphics. The basic procedure
is to throw a dart, random and uniformly by area. If it is already
covered by a prior dart’s disk, it is a “miss” and discarded; other-
wise it is a “hit” and kept. The challenge is that as the number of
prior darts becomes large, the uncovered area becomes smaller and
its boundary becomes more complex. The classic method [Dippé
and Wold 1985; Cook 1986] is to sample uniformly from the entire
domain; when the fraction of new throws that are hits becomes very
small, the sampling is likely close to maximal, so the algorithm ter-
minates. This is unbiased but also not maximal in finite time. To
get closer to maximal, we must take additional steps to track the
uncovered domain and select new points from it.

Tile-based methods improve the performance, but relax the bias-
free condition. For example, Wang tiles [Cohen et al. 2003; Lagae
and Dutré 2005] require a biased Voronoi relaxation step to sat-
isfy the empty-disk condition. Penrose tiles [Ostromoukhov et al.
2004; Ostromoukhov 2007] have a single sample per tile and re-
quire Voronoi relaxation to reduce sampling artifacts. Another
class of methods improves efficiency by computing samples on
the fly [Mitchell 1987; Jones 2006; Dunbar and Humphreys 2006;
Bridson 2007]. However, these methods are biased and require
relatively large storage. Dunbar and Humphreys [2006] proposed
a linear-time advancing-front method where each new sample is
picked from a region near to prior samples. Each new point has
the same distance to its nearest neighbor, which violates the bias-
free condition. Grid-based methods have emerged recently and are
very efficient. Wei [2008] proposed a parallel sampling method
that employs a sequence of multi-resolution uniform grids in the
dart-throwing process. While quite practical, the phase groups are
not completely bias-free, and the algorithm terminates with only
a nearly-maximal distribution. Bowers et al. [2010] use a similar
phase-group-decomposition method to Wei but without a hierarchy.

To get closer to a maximal distribution, White et al. [2007] uses a
tree to capture the remaining uncovered area and select new sam-
ples. The memory requirements have been improved by a variation
due to Gamito and Maddock [2009]. These methods are very ef-
fective in practice, and are unbiased. However, it appears to us that

the authors do not claim to provide a provably maximal distribution
with a data-structure size independent of numerical precision. The
issue is the tree depth. The tree must be deep enough to represent
the geometric gap between non-overlapping disks. In theory, this
gap may be infinitely small, and thus their tree-based methods may
be quite deep. In practice, they assume that darts are placed on
a discrete numerical-precision grid, rather than in continuous real
space. So the gap distance that needs to be represented is bounded
by some function of machine precision, and the methods bound the
tree depth by a predetermined constant. White et al. state, “In the-
ory the number of active square levels could be unbounded, but in
practice we only need enough levels for the precision of the number
being used.” Gamito and Maddock state, “A maximal-subdivision-
level condition is important to prevent the algorithm from becoming
locked in an infinite loop” and uncovered gaps that are too small to
be captured by that level are discarded, so the maximality condition
is relaxed somewhat. Figure 7 of Gamito and Maddock shows three
nearly-overlapping circles with a very small uncovered region. This
example is problematic for both Gamito and Maddock, and White
et al., but our method handles it with no special consideration.

Gamito and Maddock, and Wei, provide algorithm descriptions for
domains in arbitrary dimensions. Their papers show implementa-
tion results up to four and six dimensions respectively.

In this paper, we present an effective and provably correct algo-
rithm to solve the two-dimensional maximal Poisson-disk sampling
problem. Our algorithm inherits from Wei’s algorithm [2008] many
desirable properties, such as efficient parallel implementation us-
ing GPUs. Our algorithm is more complicated than Wei’s, but our
output is unbiased. We generate maximal distributions over non-
convex domains while consuming limited resources. To our knowl-
edge, this is the first practical algorithm that simultaneously satis-
fies all the requirements of a maximal Poisson-disk sampling, with
complexity E(n log n) time and O(n) space dependent only on the
number of output points. Higher numerical precision inherently re-
quires more memory for representing numbers and more time for
arithmetic operations; however, our method requires nothing be-
yond that.

Our sampling process has two phases. For efficiency, we use a
background grid of square cells covering the whole domain. Each
cell can accommodate a single sample. In the first phase, darts are
thrown into these cells. The initial darts are unlikely to overlap so
the algorithm progresses quickly at first, but slows down as more
darts are placed. Thus, we switch to a second phase. The first phase
leaves many small empty voids, the part of a grid cell outside all
circles. These are approximated by convex polygons. During the
second phase, darts are thrown directly into the voids, with prob-
ability proportional to the relative areas of the voids, which main-
tains the bias-free condition. (Special care is needed because of
the polygonal approximation.) The algorithm is capable of tracking
the remaining voids in the domain up to round-off error using only
O(n) size data. A maximal distribution is achieved when the do-
main is completely covered, leaving no room for new points to be
selected.

Our algorithm is capable of handling non-convex domains with
holes, which are typical in many meshing applications. Most MPS
methods focus on the unit square. To our knowledge, no prior MPS
method considers non-convex domains, with or without holes.

The serial implementation of our algorithm is capable of generating
one million samples from a square domain in less than 10 seconds
on a modern CPU. Our parallel implementation on a GPU also
produces unbiased maximal distributions and is about 2.4× faster
than our CPU implementation.

In the rest of this paper, we present our algorithm in gradual steps.

without selecting from 	

entire domain	




Also Triangular 
Meshes 

•  Reverse cause-effect 
–  Delaunay Refinement:  

Insert circle-centers to kill large Delaunay circles 
•  Maximal sample results 

–  MPS: Insert points randomly to maximally sample 
•  Small Delaunay circles result 

“Efficient and good Delaunay meshes from random points.”	

Mohamed S. Ebeida, Scott A. Mitchell, Andrew A. Davidson, Anjul Patney,	

Patrick M. Knupp, and John D. Owens. 	

Computer-Aided Design, 2011. Proc. 2011 SIAM Conference on 	

Geometric and Physical Modeling (GD/SPM11).	
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Cover the boundary ���
with random disks	


–  Nearly identical angle bounds either way 
•  Delaunay circle-centers can be ignored! 

•  Simple algorithm for covering the boundary randomly 
–  Complicated geometric proof 
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• But once points are generated we’re as fast as Triangle, and 
our GPU code is 2x faster 

“Efficient” for MPS, scales great, 
but how fast? 

•  Delaunay refinement 
–  Points from deterministic process - fast 

•  MPS 
–  Points from strict unbiased random process – slow 

MPS GPU (est)	


Triangle point generation (estimate)	




What is MPS good for? 

• Fracture mechanics simulations 
•  Fractures occur on Voronoi cell boundaries 

– Mesh variation     material strength variation 
• Ensembles of simulations 

– Unbiased sampling gives realistic cracks 
• Edge orientations are uniform random 

• Domains: non-convex, internal boundaries Comput Mech (2009) 44:455–471 465

Fig. 15 Deformed state and
crack surfaces of the concrete
column at a number of instances
in time after impact with an
impact angle of 45.00◦ (R2

1
mesh). Only cracks that have
fully softened (no cohesive
tractions) are shown. Impact
times are 2, 10, 30, 150, and
230 ms

and fragmentation results are qualitatively similar but dis-
tinctly different with respect to specific cracks and resulting
fragment sizes.

Since the concrete column is idealized as spatially
homogenous in these simulations, the random orientation of
the RCP Voronoi structure provides in effect a non-physically
based variation in the localization properties of the material.
Performing multiple simulations with different RCP Voronoi
realizations will result in a distribution of results. (Of course,
ideally, one would use correlated random fields to model the
material properties including those used in the localization

criterion, Eq. 18.) Suppose the engineering quantity of inter-
est is the cumulative distribution of fragment mass-fraction,
a common measure used in describing fragmentation results.
The cumulative distribution at the simulation time of 300 ms
is shown in Fig. 17 for twelve RCP Voronoi realizations of
the R8

i mesh family. Note the large variation in results. The
maximum fragment size for a given simulation may be iden-
tified by the last step in the curve.

The cumulative distributions in fragment mass-fraction
for the R4

i , R2
i , and R1

i mesh families are shown in
Figs. 18, 19, and 20, respectively. The convergence of the

123
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Fracture Simulations	


!

Courtesy of ���
Joe Bishop (SNL)	


Impact	

Joe Bishop, SNL org 1500 	

Fracture simulation	

Need random meshes because 	

  cracks are along edges	




Alternatives 

• Voronoi Mesher 
– CVT Centroidal Voronoi Tessellation 

• Seed = cell’s center of mass 
• Via iterative adjustment of seed location 
• Good shaped cells, but “biased”, regular mesh 
•  Target app: fracture simulations with fracture along 

mesh edges 
• Primal meshers 

– Miller: maximal disk packings for bounded edge-
radius tet meshes 

– Shimada and Gossard Bubble meshes 
•  Force network, insertion and removal 

Comput Mech (2009) 44:455–471 457

deformed configuration, the position of a material point is
denoted by x, and the displacement u = x−X. In the numer-
ical solution to follow, interpolation functions will be con-
structed directly on the reference configuration. Therefore,
a total Lagrangian formulation of the governing equations
is appropriate [8]. The conservation of linear momentum is
given by [7]

∂P
∂X

: I + ρof = ρoü, (1)

where P is the first Piola-Kirchhoff stress tensor, f is the body
force vector per unit mass, ρo is the reference density, and I
is the identity tensor. The weak form of Eq. 1 is given by
∫

#o

ρoü · δu d#o =
∫

%o

to · δu d%o +
∫

#o

ρof · δu d#o

−
∫

#o

ρoP : (∂(δu)/∂X) d#o (2)

where δu is a virtual displacement vector, and to is the trac-
tion vector per unit reference area. The displacement u and
virtual displacement δu are members of the Sobolev function
space of degree one [8].

In the next section, a randomly close-packed Voronoi tes-
sellation is used to mesh the reference domain #o. The face
network of the Voronoi mesh will be used as a random basis
for representing new fracture surfaces in the deformed con-
figuration. In Sect. 4, Eq. 2 will be solved using a Galerkin
finite element approach where each Voronoi cell is formu-
lated as a finite element directly on the reference
configuration.

3 Randomly close-packed Voronoi tessellations

Voronoi tessellations have a rich history in mathematics and
science and have a number of advantageous properties [43].
Given a finite set of points Xi or nuclei, the Voronoi
tessellation is defined as the collection of regions or cells
Vi where

Vi =
⋂

i "= j

{X|d(Xi , X) < d(X j , X)}. (3)

Here, X represents an arbitrary point in the domain, and the
function d is the Euclidean distance between two points.
Each spatial point belonging to the Voronoi cell i is closer to
nucleus i than all other nuclei. Note that each Voronoi cell is
defined as the intersection of half-spaces and is thus convex.
An example of a two dimensional Voronoi cell is shown in
Fig. 1. While the Voronoi tessellation can be formed from
any finite set of points or seeds, a special structure arises
from the study of close packing of equi-sized hard spheres
[1]. A classic experiment of dropping hard spheres into a rel-
atively large container produces a structure known as random

Fig. 1 A collection of points and their associated Voronoi diagram
defined by Eq. 3

(a) (b)

Fig. 2 The associated Voronoi diagram for both (a) an hexagonal close
packed array of points, and (b) a randomly close packed array

close-packed (RCP) [64]. Unlike the well known hexagonal
close-packed (HCP) structure with a packing factor of 0.740,
the RCP structure exhibits a maximum packing factor of only
0.637. An example of the associated Voronoi tessellation for
both the HCP and RCP structures in two dimensions is shown
in Fig. 2. The RCP structure arises in a number of scientific
fields and has been extensively studied. The RCP structure
provides a foundation for the study of amorphous solids as
described by Zallen [64]. The statistical geometry aspects of
RCP structures and their associated Voronoi diagrams have
been studied by Finney [20]. In three dimensions the aver-
age number of nearest neighbors is 14.3. For comparison, the
number of nearest neighbors of the hexagonal close-packed
structure is exactly 14. For the RCP structure the average
aspect ratio of each Voronoi cell is approximately one. The
median number of cell faces is 14 with a large majority of
the face distribution in the range of 13 to 16. The median
number of edges of each cell face is 5 with a large majority
of the distribution in the 4 to 6 range. Most importantly each
junction or node of the RCP Voronoi structure is randomly
oriented with only a short range correlation to neighboring
nodes. In two dimensions the RCP Voronoi structure results
in cells with an average number of edges of exactly 6 and

123



IMR paper algorithm! 
•  Random Polyhedral Meshing 

–  Generate random points using the maximal Poisson-disk process 
•  Points placed on reflex boundary features, but not concave or flat features 
•  Contrast to primal methods 

–  Symbolically split points (not in paper) 
–  Construct Voronoi cells  

•  Bounding box, cut by boundary and Voronoi planes 
–  Bounding box works because cells have bounded size 

•  Small edges collapsed 

•  Get 
–  Voronoi mesh of convex polyhedral cells 
–  Bounded cell aspect ratio and facet dihedrals 
–  Random orientation of mesh edges 

•  Needed for fracture mechanics where cracks are restricted to edges 



Boundary Sampling 
•  Maximally sample 

–  Points interior to domain, not on boundary… 
…unless we have to:  

•  Reflex features require special care, not sharp ones 
–  “Reflex” includes 2-sided facets 

•  Not the dual of a body-fitted primal mesh 
–  Better (not constant 90°) dihedrals at boundary 

•  Goal: cells align with boundary features, cells are convex 
•  Sufficient: every point on a reflex face is closest to a sample from that 

reflex feature (or sub-facet) 
–  Sqrt(2) denser sampling on reflex feature 

reflex boundary edge convex boundary edge 
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 Bonus: Convex Cells 
Paper: star-shaped cells at reflex faces 

• Clipping by boundary 
– By prior page only non-reflex (convex) boundary 

features affect interior samples 
–  Intersection of convex Voronoi cell w/ convex 

boundary = convex clipped cell 
• Symbolic duplication of reflex samples 

New
approaches to

solve the
meshing
problem

M. S. Ebeida
S. A. Mitchell

Intro

Exist. All Hex

Our All-Hex
Smooth Input
Refinement
Sharp Features
Input
Singularities

Our All-hex meshing: Handling of sharp features

... All regions around boundary are convex and have tri-valent
corners, imprints on neighbors should be handled the same as
we did before!

M. S. Ebeida S. A. Mitchell New approaches to solve the meshing problem

New

approaches to

solve the

meshing

problem

M. S. Ebeida

and S. A.

Mitchell

MPS-CDT

All-Hex

LBMD
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Voronoi Quality 
• Provable facet dihedral angle bounds 
• Provable cell aspect ratios 



Quality proof idea 

 

 
–  “Maximality” bounds the maximum distance from  

  Voronoi cell seed to its vertices 
= Delaunay vertex to circle center 

–  “Disk-free” bounds the minimum distance between  
two seeds 
= a Delaunay edge 

Uniform Random Voronoi Meshes 3

1.2 Maximal Poisson-disk Sampling (MPS)

Maximal Poisson-disk sampling (MPS) selects random points {xi} = X, from
a domain, D. There is an exclusion/inclusion radius r: empty disk means
no two sample points are closer than r to one another; and maximal means
samples are generated until every location is within r of a sample. Di is the
subregion of D outside the r-disks of the first i samples. For a bias-free (a.k.a.
unbiased) sampling procedure, the probability P of selecting a point from a
disk-free subregion Ω is proportional to Ω’s area.

Bias-free: ∀Ω ⊂ Di−1 : P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)
(1a)

Empty disk: ∀xi, xj ∈ X, i �= j : ||xi − xj || ≥ r (1b)

Maximal: ∀p ∈ D, ∃xi ∈ X : ||p− xi|| < r (1c)

A maximal r-disk sample (1b) (1c) is equivalent to a maximal sample of
non-overlapping r/2-disks, known as a random close packing. Sphere pack-
ings appear frequently in nature: e.g. sand, atoms in a liquid, trees in a for-
est. Processes generating packings include random sequential adsorption, the
hard-core Gibbs process, and the Matérn second process. Algorithmically, by
successively generating points and rejecting those violating (1b) it is easy to
get a near-maximal sample if run-time is unimportant. In recent years the
community has developed unbiased MPS algorithms with near linear perfor-
mance [10, 9, 13]. There are variations based on advancing fronts that have
biased point locations, violating (1a), but may be more efficient [30].

1.3 Voronoi Diagrams

A point seed xi defines a Voronoi cell, V , the subset of the domain that is
closer to that seed than any other seed [11]. The cell equation is related [25]
to the maximal sampling condition (1c).

Vi = {p} ∈ D : ∀j, ||p− xi|| ≤ ||p− xj || (2)

For point sets, a dual of the Voronoi diagram is a Delaunay triangulation.1

Voronoi meshes differ from the more familiar unstructured primal meshes. Pri-
mal elements are simplices — or perhaps squares or hexahedra, a.k.a. cuboids
— with a fixed number of subfaces with a particular structure. Vertices may
be in an arbitrary number of elements. (The maximum degree is related to the
minimum angle.) For Voronoi meshes the situation is reversed by dimension.
Vertices have nominally fixed degree: e.g. three edges in two-dimensions, bar-
ring extra cocircularity. But cells have arbitrary subfaces, and relationships
between subfaces are variable, position dependent. Traversing an element may

1Georgy Voronoy being the doctoral advisor of Boris Delone.

Voronoi:	
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Voronoi facet dihedral angles:	

Delaunay triangle angles:	


Bias-free: ∀Ω ⊂ Di−1 : P (xi ∈ Ω) =
Area(Ω)

Area(Di−1)
(1a)

Empty disk: ∀xi, xj ∈ X, i �= j : ||xi − xj || ≥ r (1b)

Maximal: ∀p ∈ D, ∃xi ∈ X : ||p− xi|| < r (1c)

In recent work [13], we have shown how to efficiently pro-

duce a sampling satisfying all three criteria. The main

datastructure is a background uniform cell (square) de-

composition to keep track of the remaining uncovered area

of the domain. The diagonal of a square is r, so it can

contain at most one dart.

We have two phases. In the first phase, darts (vertices, disk

centers) are thrown into empty cells. If a new dart violates

(1b), it is rejected. We only need to check a constant num-

ber of nearby cells. After a linear number of dart throws,

the remaining uncovered area is expected to be small, and

we switch. In the second phase, the main innovation is

to build a polygonal approximation to the disk-free voids

within cells. We weight each polygonal void by its area. We

randomly throw darts based on these weights, which is the

only non-linear step. Careful attention to placing or reject-

ing darts within the polygonal approximations leads to an

unbiased sampling. Efficiency arises from careful handling

of when to update and recalculate weights. The expected

run-time is O(n log n); the log n dependence is very mild.

The memory is deterministic O(n). The number of cells

|C| = Θ(n).

For this paper we treat that algorithm as a black-box that

produces both the sample points and the cells containing

them. We also rely on the ability of the black-box to accept

some prescribed sample points on the domain boundary,

and then generate the rest of the points needed to achieve

a maximal distribution.

2.2. Preprocess sharp features

We assume sharp vertices have been protected by prepro-

cessing using one of the methods from the introduction.

Whether a vertex is too close to a non-containing edge and

must be preprocessed, i.e. is sharp, depends on r. After pre-

processing, what we require is that r is smaller than any

input edge; and r is small enough that when we protect

the domain boundary the disks for one input edge will not

intersect another input edge, except perhaps for the disk

centered at the common vertex of the edges.

2.3. Protecting the domain boundary

Pure maximal Poisson sampling [13] may introduce vertices

arbitrarily close to the domain boundary. This poses no

problems for maximal Poisson sampling per se, but would

result in triangles with unbounded small and large angles.
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Fig. 3. (a) A dark-blue random disk covering the interior intersection
point of the blue circles covers the forbidden red region.

To prevent this, we protect the domain boundary by in-

troducing sample points exactly on the boundary, or at

least some distance from the boundary. The disks of these

samples cover a neighborhood of the boundary, preventing

the introduction of points that could create triangles with

bad angles. The price is introducing a sample bias near the

boundary.

We follow the simple but effective methods of Chew [8]. The

main idea is to place a single dart at each vertex, and then

protect edges by maximally placing random darts along

them.

It is easy to space disks between r and 2r apart. However,

disks between
√
3r and 2r apart do not overlap enough to

protect the boundary. We have two solutions: close-disks
and interior-disks.

2.3.1. Protecting with close-disks

It is also easy to space boundary disks between
√
3r/2

and
√
3r apart. This results in some boundary r-disks con-

taining each other’s centers, and an angle lower bound of

arcsin
√
3/4 ≈ 25.6◦ instead of 30

◦
. The quality and timing

results given for the implementation are for this strategy.

2.3.2. Protecting with interior-disks

See Figure 3(a). We may preserve the property that r-disks

do not contain each other’s centers and obtain a 30
◦
an-

gle bound by following the approach of Chew [8]: protect

long (>
√
3r) edges by introducing a disk centered in the

interior. Let a and b be consecutive samples on a boundary

edge, and Ca and Cb their r-radius disks. Consider a circle

with chord ab. The Central Angle Theorem, Figure 3(b),

says the chord subtends the same angle for any point on

the arc of the circle on one side of ab. The angle only de-

pends on the circle radius. Any point inside the circle makes

an even larger angle with ab. After protecting the bound-

ary, only interior points are added; we will generate a cov-

ering triangulation of the protected boundary. The angle

that a constraint edge makes with a visible point is a lower

bound on the maximum angle in any covering triangula-

tion, regardless of additional points or choice of triangula-

tion edges [28]. So we cannot place any samples inside the
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Fig. 3. (a) A dark-blue random disk covering the interior intersection
point of the blue circles covers the forbidden red region.

To prevent this, we protect the domain boundary by in-

troducing sample points exactly on the boundary, or at

least some distance from the boundary. The disks of these

samples cover a neighborhood of the boundary, preventing

the introduction of points that could create triangles with

bad angles. The price is introducing a sample bias near the

boundary.

We follow the simple but effective methods of Chew [8]. The

main idea is to place a single dart at each vertex, and then

protect edges by maximally placing random darts along

them.

It is easy to space disks between r and 2r apart. However,
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3r and 2r apart do not overlap enough to

protect the boundary. We have two solutions: close-disks
and interior-disks.
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It is also easy to space boundary disks between
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and
√
3r apart. This results in some boundary r-disks con-

taining each other’s centers, and an angle lower bound of

arcsin
√
3/4 ≈ 25.6◦ instead of 30

◦
. The quality and timing

results given for the implementation are for this strategy.

2.3.2. Protecting with interior-disks

See Figure 3(a). We may preserve the property that r-disks

do not contain each other’s centers and obtain a 30
◦
an-

gle bound by following the approach of Chew [8]: protect

long (>
√
3r) edges by introducing a disk centered in the

interior. Let a and b be consecutive samples on a boundary

edge, and Ca and Cb their r-radius disks. Consider a circle

with chord ab. The Central Angle Theorem, Figure 3(b),

says the chord subtends the same angle for any point on

the arc of the circle on one side of ab. The angle only de-

pends on the circle radius. Any point inside the circle makes

an even larger angle with ab. After protecting the bound-

ary, only interior points are added; we will generate a cov-

ering triangulation of the protected boundary. The angle

that a constraint edge makes with a visible point is a lower

bound on the maximum angle in any covering triangula-

tion, regardless of additional points or choice of triangula-

tion edges [28]. So we cannot place any samples inside the
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Aspect Ratio Proofs  
(star-shaped cells) 

• Aspect ratio 
– Circumscribed sphere radius < r (from maximality) 
–  Inscribed sphere radius > some factor r (from disk-free)  
   If cell is interior: r/2 

x
i 

r/2 

r/4 

f
 

xi 

r/2 

! 

R 

v,e 

! 

xi 

fs : disjoint facet from v v 

Facets of one vertex	
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Aspect Ratio 
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Quality plots 
Dihedral Angles 
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Recall proofs idea:	

Distance from seed to 	

  cell vertex bounded above by maximality	

  cell facet distance bounded below by disk-free	


If we sampled all domain faces 	

then all angles would be 90°	




Quality: what’s missing? 
Work in progress: 
• Short edges 

– Collapsed, leading to non-planar faces 
– OK for Joe Bishop fracture simulation but not ideal 

• Voronoi facet aspect ratio bounds 
– Smoothing or sample insertion constraints may fix 

• 90° facet dihedrals between samples on reflex 
faces. (Recall no samples on other faces) 
– Small random perpendicular offsets may fix 

x x x x x x x x x x x x 
x x x x 



Conclusions 
•  w/ Patney, Davidson, Owens (UC Davis) 
•  w/ Knupp, Bishop, Martinez, Leung (SNL) 

•  1. Maximal Poisson-disk sampling point clouds 
•  Essence: First provable maximal, bias-free,  

O(n) space, E(n log n ) time 
•  Impact: Graphics hot topic (texture synthesis). 

Ensemble calculations for V&V 
2. Triangular meshes 

•  Essence: Provable quality bounds from  
random points 

•  Impact: Seismic simulations 
3. Voronoi meshes 

•  Essence: NOT the dual of a boundary-fitted 
triangulation 

•  Impact: Fracture simulations 

Efficient Maximal Poisson-Disk Sampling.   
Ebeida, Patney, Mitchell, Davidson, Knupp & Owens.  
SIGGRAPH 2011. ACM Transactions on Graphics.  
 

Efficient and Good Delaunay Meshes From Random Points. 
Ebeida, Mitchell, Davidson, Patney, Knupp & Owens.  
SIAM Conference on Geometric and Physical Modeling.  
J Computer-Aided Design special issue. 

Uniform Random Voronoi Meshes.  
Ebeida & Mitchell. 
International Meshing Roundtable, Oct 2011. 



New
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solve the

meshing

problem
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MPS-CDT

All-Hex

LBMD

MG

Other method that improves the quality via

deterministic point insertion:

Chew’s method for example

• Ignore the information
associated with the input
point cloud.

• Physics is initially ignored
as well.

• Generate an initial mesh
with low quality.

• Improve the quality by
inserting points in the
circum-centers of bad
triangles
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-  Community should consider using maximal samples for 
mesh points… even if Poisson-disk process isn’t important  

-  Better sizing control. 
-  Never O(n2) 

-  To do: study element count and grading vs. Delaunay refinement. 


